Local smoothing estimates related to the circular maximal theorem (Q1357637)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Local smoothing estimates related to the circular maximal theorem |
scientific article; zbMATH DE number 1019781
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Local smoothing estimates related to the circular maximal theorem |
scientific article; zbMATH DE number 1019781 |
Statements
Local smoothing estimates related to the circular maximal theorem (English)
0 references
9 November 1997
0 references
For \(f\) in the Schwartz space \(S({\mathbb{R}}^2)\), \(t\) in \([1,2]\), and \(\alpha\) in \({\mathbb{R}}^+\), define \(\widehat{f}\) to be the Fourier transform of \(f\), and \(A_\alpha f(t, \cdot)\) to be the inverse Fourier transform of the function \(\xi\mapsto\widehat{f}(\xi) (1+|\xi|)^{-\alpha} e^{it|\xi|}\). The main result of this paper is that \(|A_\alpha f|_{L^q([1,2]\times {\mathbb{R}}^2)}\) may be estimated in terms of \(|f|_{L^p({\mathbb{R}}^2)}\), when \(1\leq p\leq s/2\) and \(q=3p/(p-1)\). This sheds more light on Stein's circular maximal function on \({\mathbb{R}}^2\). The result is extended to more general integral operators.
0 references
circular maximal function
0 references
local smoothing
0 references
Fourier integral operators
0 references