Homotopy \(K3\) surfaces and \(\text{mod }2\) Seiberg-Witten invariants (Q1357638)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Homotopy \(K3\) surfaces and \(\text{mod }2\) Seiberg-Witten invariants |
scientific article; zbMATH DE number 1019782
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Homotopy \(K3\) surfaces and \(\text{mod }2\) Seiberg-Witten invariants |
scientific article; zbMATH DE number 1019782 |
Statements
Homotopy \(K3\) surfaces and \(\text{mod }2\) Seiberg-Witten invariants (English)
0 references
10 June 1997
0 references
Let \(X\) be a closed smooth four-manifold which is homotopy equivalent to a K3 surface. Let \(P\to X\) be the unique \(\text{Spin}^c\)-structure up to isomorphism with trivial determinant line bundle. Then the value of the Seiberg-Witten invariant of \(P\) is congruent to one modulo two.
0 references
4-manifold
0 references
K3 surface
0 references
\(\text{Spin}^ c\)-structure
0 references
Seiberg-Witten invariant
0 references
0.91972023
0 references
0 references
0.91804945
0 references
0.9140585
0 references
0 references
0.90972066
0 references
0.9050473
0 references
0.90463567
0 references