An abstract result on asymptotically positively homogeneous differential equations (Q1359573)

From MaRDI portal





scientific article; zbMATH DE number 1031569
Language Label Description Also known as
English
An abstract result on asymptotically positively homogeneous differential equations
scientific article; zbMATH DE number 1031569

    Statements

    An abstract result on asymptotically positively homogeneous differential equations (English)
    0 references
    0 references
    25 November 1997
    0 references
    This article presents a new result on the nondegeneracy of a vector field \(I-P-M\) in a real Banach space \(X\); here \(P\) is a linear and \(M\) a positive 1-homogeneous operator. The simple abstract result allows the author to prove some new existence theorems of \(\omega\)-periodic solutions for asymptotically positively homogeneous differential equations of the form \[ \dot x=g(t,x)+ h(t,x) \] with a continuous function \(g(t,x): [0,\omega]\times \mathbb{R}^n\to\mathbb{R}^n\), positively homogeneous with respect to \(x\), and a Carathéodory function \(h(t,x): [0,\omega]\times \mathbb{R}^n\to \mathbb{R}^n\) satisfying the condition \[ \limsup_{|x|\to\infty} \frac{|h(t,x)|}{|x|}. \]
    0 references
    \(\omega\)-periodic solutions
    0 references
    asymptotically positively homogeneous differential equations
    0 references
    Carathéodory function
    0 references

    Identifiers