High energy positive solution for mixed and Neumann elliptic problems with critical nonlinearity (Q1361051)

From MaRDI portal





scientific article; zbMATH DE number 1038436
Language Label Description Also known as
English
High energy positive solution for mixed and Neumann elliptic problems with critical nonlinearity
scientific article; zbMATH DE number 1038436

    Statements

    High energy positive solution for mixed and Neumann elliptic problems with critical nonlinearity (English)
    0 references
    0 references
    0 references
    8 June 1998
    0 references
    The authors consider the problem \[ -\Delta u+ a(x)u= u^\gamma,\quad u>0\quad\text{in }\Omega,\quad u= 0\quad\text{on }\Gamma_0,\quad {\partial u\over\partial n}= 0\quad\text{on }\Gamma_1, \] where \(\Omega\subset\mathbb{R}^N\), \(\gamma= 2N/(N-2)\), \(\Gamma_1\neq\emptyset\), \(a\in L^{N/2}(\Omega)\) is a nonnegative function. They prove existence and multiplicity results for a special class of functions \(a(x)\).
    0 references
    critical Sobolev exponent
    0 references
    existence
    0 references
    multiplicity
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers