Some results on \([n,m]\)-paracompact and \([n,m]\)-compact spaces (Q1363184)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some results on \([n,m]\)-paracompact and \([n,m]\)-compact spaces |
scientific article; zbMATH DE number 1049433
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some results on \([n,m]\)-paracompact and \([n,m]\)-compact spaces |
scientific article; zbMATH DE number 1049433 |
Statements
Some results on \([n,m]\)-paracompact and \([n,m]\)-compact spaces (English)
0 references
12 March 1998
0 references
Summary: Let \(n\) and \(m\) be infinite cardinals with \(n\leq m\) and \(n\) be a regular cardinal. We prove certain implications of \([n,m]\)-strongly paracompact, \([n,m]\)-paracompact and \([n,m]\)-metacompact spaces. Let \(X\) be \([n,\infty]\)-compact and \(Y\) be a \([n,m]\)-paracompact (resp. \([n,\infty]\)-paracompact) \(P_n\)-space (resp. \(wP_n\)-space). If \(m= \sum_{k<n} m^k\) we prove that \(X\times Y\) is \([n,m]\)-paracompact (resp. \([n,\infty]\)-paracompact).
0 references
strongly paracompact space
0 references
metacompact space
0 references