\({\mathcal R}\)-primary \(L\)-representations of \(L\)-ideals (Q1364506)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \({\mathcal R}\)-primary \(L\)-representations of \(L\)-ideals |
scientific article; zbMATH DE number 1057124
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \({\mathcal R}\)-primary \(L\)-representations of \(L\)-ideals |
scientific article; zbMATH DE number 1057124 |
Statements
\({\mathcal R}\)-primary \(L\)-representations of \(L\)-ideals (English)
0 references
1 November 1998
0 references
Let \(R\) be a commutative ring and \(L\) a complete and a completely distributive lattice. An \(L\)-fuzzy subset of \(R\) is a function \(\mu: R\to L\). We examine the basic properties of prime \(L\)-ideals, primary \(L\)-ideals, and \({\mathcal R}\)-radicals of \(L\)-ideals where \(L\) is a completely distributive lattice. We determine to what extent every \(L\)-ideal has an \({\mathcal R}\)-primary \(L\)-representation.
0 references
\(L\)-fuzzy subset
0 references