Asymptotics for singular vectors in Verma modules over the Virasoro algebra (Q1365149)

From MaRDI portal





scientific article; zbMATH DE number 1054060
Language Label Description Also known as
English
Asymptotics for singular vectors in Verma modules over the Virasoro algebra
scientific article; zbMATH DE number 1054060

    Statements

    Asymptotics for singular vectors in Verma modules over the Virasoro algebra (English)
    0 references
    0 references
    3 November 1998
    0 references
    Let \(M(h,c)\) be the Verma module over the Virasoro algebra with the highest weight \((h,c)\) and highest weight vector \(v\). For every \(k,l \in {\mathbb Z}\) and \(t \in {\mathbb C} \setminus 0\), let \[ h_{k,l}(t) = { {1-k^2} \over {4} } t+{ { 1-k l}\over {2} }+{ {1-l^2} \over {4} } t^{-1},\qquad c(t) = 6 t+13+6 t^{-1}. \] Then for \(k, l > 0\) and \(t \in {\mathbb C} \setminus 0\) the Verma module \(M( h_{k,l}(t), c(t))\) contains a singular vector \(S_{k,l} (t) v\) of degree \(k l\) [cf. \textit{D. Fuchs}, Adv. Sov. Math. 17, 65-74 (1993; Zbl 0827.17028)]. In the paper under review, the authors investigate the terms of extremal degrees of \(S_{k,l} (t)\). In particular, they prove that the highest and the lowest degrees of \(S_{k,l} (t)\) in \(t\) are equal, respectively, to \((k-1) l\) and \(-(l-1)k\).
    0 references
    Virasoro algebra
    0 references
    Verma modules
    0 references
    singular vectors
    0 references

    Identifiers