Global solutions to the relativistic Euler equation with spherical symmetry (Q1365322)

From MaRDI portal





scientific article; zbMATH DE number 1054333
Language Label Description Also known as
English
Global solutions to the relativistic Euler equation with spherical symmetry
scientific article; zbMATH DE number 1054333

    Statements

    Global solutions to the relativistic Euler equation with spherical symmetry (English)
    0 references
    0 references
    28 August 1997
    0 references
    The relativistic Euler equation in \(\mathbb{R}^3\) is given by \[ {\partial\over\partial t} \Biggl({\rho c^2+P\over c^2} {1\over 1-{v^2\over c^2}}-{P\over c^2}\Biggr)+ \sum^3_{j=1} {\partial\over\partial x_j} \Biggl({\rho c^2+P\over c^2} {v_j\over 1-{v^2\over c^2}}\Biggr)=0, \] \[ {\partial\over\partial t} \Biggl({\rho c^2+P\over c^2} {v_i\over 1-{v^2\over c^2}}\Biggr)+ \sum^3_{j=1} {\partial\over\partial x_j} \Biggl({\rho c^2+P\over c^2} {v_iv_j\over 1-{v^2\over c^2}}+\delta_{ij}P\Biggr)= 0,\;i=1,2,3. \] In 1993, Smoller and Temple have constructed global weak solutions to this equation in the one-dimensional case. In this article we show the existence of global weak solutions with spherical symmetry.
    0 references
    Riemann problem
    0 references
    Glimm's method
    0 references
    relativistic Euler equation
    0 references
    existence of global weak solutions with spherical symmetry
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references