A Carleson estimate for the complex Monge-Ampère operator (Q1366624)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Carleson estimate for the complex Monge-Ampère operator |
scientific article; zbMATH DE number 1060824
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Carleson estimate for the complex Monge-Ampère operator |
scientific article; zbMATH DE number 1060824 |
Statements
A Carleson estimate for the complex Monge-Ampère operator (English)
0 references
16 September 1997
0 references
Let \(D\) be a pseudoconvex domain in \(\mathbb{C}^n\) that admits a plurisubharmonic defining function \(\rho\) of class \(C^2\). We prove that if \(u_1,\dots,u_r\) are bounded plurisubharmonic functions in \(D\) and \(\omega= dd^c\log 1/(-\rho)\), then \((-\rho)^n dd^cu_1\wedge\dots\wedge dd^cu_r\wedge\omega^{n-r}/(n-r)!\) is a Carleson measure. This is a global variant of the Chern-Levine-Nirenberg inequality.
0 references
complex Monge-Ampère operator
0 references
Carleson measure
0 references
Bergman metric
0 references
0.9263027
0 references
0 references
0.9219973
0 references
0.9219973
0 references
0.9212408
0 references
0.92113185
0 references