The Hardy-Littlewood maximal function of a Sobolev function (Q1366942)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Hardy-Littlewood maximal function of a Sobolev function |
scientific article; zbMATH DE number 1062358
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Hardy-Littlewood maximal function of a Sobolev function |
scientific article; zbMATH DE number 1062358 |
Statements
The Hardy-Littlewood maximal function of a Sobolev function (English)
0 references
17 September 1997
0 references
In this paper a main result is that the Hardy-Littlewood maximal operator is bounded in the Sobolev space \(W^{1,p}(\mathbb{R}^n)\) for \(1<p\leq\infty\). This result is applied to study a weak type inequality for the Sobolev capacity and to prove that the Hardy-Littlewood maximal function of a Sobolev function is quasi-continuous.
0 references
quasi-continuity
0 references
Hardy-Littlewood maximal operator
0 references
Sobolev space
0 references
Sobolev capacity
0 references
Hardy-Littlewood maximal function
0 references