Numerical radii of simple powers (Q1369350)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Numerical radii of simple powers |
scientific article; zbMATH DE number 1076373
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Numerical radii of simple powers |
scientific article; zbMATH DE number 1076373 |
Statements
Numerical radii of simple powers (English)
0 references
25 May 1998
0 references
The author considers the following problem due to John Holbrook [cf. \textit{K. R. Davidson} and \textit{J. A. R. Holbrook}, Mich. Math. J. 35, NO. 2, 261-267 (1988; Zbl 0692.47005)]: If \(S\) is an operator on a complex Hilbert space with operator norm \(|S|\leq 1\), \(\omega(T)\) denotes the numerical radius of the operator \(T\), is it true that for every positive integer \(n\), \(\omega(S^{n+1}) \leq\omega (S^n)\)? A counterexample to \(\omega (S^4) \leq\omega (S^3)\) with \(|S|=1\) is given in this paper.
0 references
Hilbert space
0 references
numerical radius
0 references
counterexample
0 references