\(L^ p\)-differentiability of \(W^{l,p}(\mathbb{R}^ n)\quad (1<p<+\infty)\) functions (Q1369763)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L^ p\)-differentiability of \(W^{l,p}(\mathbb{R}^ n)\quad (1 |
scientific article; zbMATH DE number 1077084
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L^ p\)-differentiability of \(W^{l,p}(\mathbb{R}^ n)\quad (1<p<+\infty)\) functions |
scientific article; zbMATH DE number 1077084 |
Statements
\(L^ p\)-differentiability of \(W^{l,p}(\mathbb{R}^ n)\quad (1<p<+\infty)\) functions (English)
0 references
20 April 1998
0 references
The paper characterizes \(f\in W^\ell_p(\mathbb{R}^n)\), \(1<p<\infty\), in terms of \(f(x+ h)-f(x)- \sum^n_{j=1} h_jg_j\) with \(g_j\in L_p(\mathbb{R}^n)\) and \(f(x+ h)-\sum_{|\alpha|\leq \ell}{h^\alpha\over \alpha!} , g^\alpha(x)\), \(g^\alpha\in L_p(\mathbb{R}^n)\), where \(x\in \mathbb{R}^n\), \(h= (h_1,\dots, h_n)\in\mathbb{R}^n\).
0 references
Sobolev spaces
0 references