On a variable smoothing procedure for Krylov subspace methods (Q1375088)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a variable smoothing procedure for Krylov subspace methods |
scientific article; zbMATH DE number 1100491
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a variable smoothing procedure for Krylov subspace methods |
scientific article; zbMATH DE number 1100491 |
Statements
On a variable smoothing procedure for Krylov subspace methods (English)
0 references
6 January 1998
0 references
The convergence behavior of the Galerkin-Krylov subspace method for solving linear systems can be very erratic, and therefore a smoothing technique or a minimal residual seminorm variant of these Galerkin methods can be proposed to eliminate this problem. The authors examine a class of minimal residual seminorm methods, and show that these methods can be obtained from a variable smoothing technique applied to Galerkin methods.
0 references
convergence
0 references
Galerkin-Krylov subspace method
0 references
smoothing
0 references
minimal residual seminorm methods
0 references
0 references
0 references
0 references
0 references