An algebraic characterization of \({\mathcal R}\)-spaces (Q1376577)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An algebraic characterization of \({\mathcal R}\)-spaces |
scientific article; zbMATH DE number 1098614
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An algebraic characterization of \({\mathcal R}\)-spaces |
scientific article; zbMATH DE number 1098614 |
Statements
An algebraic characterization of \({\mathcal R}\)-spaces (English)
0 references
18 June 1998
0 references
[\textit{D. Ferus} [Math. Ann. 247, 81-93 (1980; Zbl 0446.53041)] characterized all symmetric \(R\)-spaces algebraically by Jordan triple systems. The present authors characterizes general \(R\)-spaces using more general algebraic structures called Euclidean double-triple systems.
0 references
\(s\)-representation
0 references
\(R\)-spaces
0 references
Euclidean double-triple systems
0 references
0 references
0.9027357
0 references
0.9020528
0 references
0.89989316
0 references
0.89756167
0 references
0 references
0.89397657
0 references