On the spectrum of a strictly pseudoconvex CR manifold (Q1378231)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the spectrum of a strictly pseudoconvex CR manifold |
scientific article; zbMATH DE number 1114161
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the spectrum of a strictly pseudoconvex CR manifold |
scientific article; zbMATH DE number 1114161 |
Statements
On the spectrum of a strictly pseudoconvex CR manifold (English)
0 references
19 October 1998
0 references
Let \((M,T^{1,0}M)\) be a compact, strictly pseudoconvex CR-manifold and let \(\theta\) be a choice of contact form. This defines a differential operator: \(\overline\partial_b f= df |_{T^{0,1} M}\), a vector field \(T\), transverse to \(\ker\theta\): \(\theta (T)=0\) \(T\rfloor d \theta =0\) and a pseudohermitian connection, \(\nabla_\theta\). Let Ric be the Ricci curvature and \(A\) the torsion tensor of \(\nabla_\theta\). The authors prove the following theorem: Theorem: Assume that the problem \[ \begin{cases} \Delta_bv= \lambda_kv, \quad & T(v)=0,\\ \sup v=1 \\ \inf v=-c, \quad & 0<c\leq 1\end{cases} \] has a \(C^\infty\) solution. If \[ \text{Ric} (X-iJX,X+ iJX) +2(n-2) A(X,JX)\geq 0 \] for all \(X\in \ker\theta\) then \(\lambda_k\geq {\pi^2 \over d^2_\theta}\). Here \(\Delta_b f=2(\overline \partial^*_b \overline \partial_bf) -inT(f)\) und \(d_\theta\) is the diameter of \(M\) with respect to the Webster metric.
0 references
sub-Laplacian
0 references
eigenvalue estimate
0 references
pseudohermitian structure
0 references
strictly pseudoconvex CR-manifold
0 references