Metrics of nonnegative scalar curvature on surfaces of Kähler type (Q1378251)

From MaRDI portal





scientific article; zbMATH DE number 1114174
Language Label Description Also known as
English
Metrics of nonnegative scalar curvature on surfaces of Kähler type
scientific article; zbMATH DE number 1114174

    Statements

    Metrics of nonnegative scalar curvature on surfaces of Kähler type (English)
    0 references
    8 February 1998
    0 references
    It is known (see \textit{A. L. Besse} [`Einstein manifolds' (Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 10, Springer Verlag, Berlin etc.) (1987; Zbl 0613.53001)]) that every compact manifold of dimension \(n\geq 3\) carries a Riemannian metric of (constant) negative scalar curvature, but in general there are obstructions for the existence of metrics of positive scalar curvature. Using Seiberg-Witten invariants, the author proves that the only compact complex surfaces \(X\) with \(\text{kod} (X)\geq 0\) and \(b_1(X)\) even, which carry a Riemannian metric of nonnegative scalar curvature, are minimal with \(\text{kod} (X)=0\). In this case, every such metric is Ricci-flat.
    0 references
    Riemannian metrics
    0 references
    Ricci-flat metrics
    0 references
    Seiberg-Witten theory
    0 references
    compact complex surfaces
    0 references
    nonnegative scalar curvature
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references