Ishikawa and Mann iteration methods with errors for nonlinear equations of the accretive type (Q1378413)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ishikawa and Mann iteration methods with errors for nonlinear equations of the accretive type |
scientific article; zbMATH DE number 1117631
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ishikawa and Mann iteration methods with errors for nonlinear equations of the accretive type |
scientific article; zbMATH DE number 1117631 |
Statements
Ishikawa and Mann iteration methods with errors for nonlinear equations of the accretive type (English)
0 references
17 March 1998
0 references
For the equation \(Tx= f\) with Lipschitz strongly accretive operator \(T: E\to E\) in an arbitrary Banach space \(E\) it is proved that the Ishikawa and the Mann iterative methods with errors [\textit{L.-S. Liu}, J. Math. Anal. Appl. 194, No. 1, 114-125 (1995; Zbl 0872.47031)] converge strongly to the solution. Related results are obtained for the iterative approximations of fixed points of strongly pseudocontractive operators and also for the solution of the equation \(x+ Tx= f\) with \(m\)-accretive \(T: E\to E\).
0 references
Lipschitz strongly accretive operator
0 references
Ishikawa and the Mann iterative methods with errors
0 references
iterative approximations of fixed points
0 references
strongly pseudocontractive operators
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9385159
0 references
0.9366274
0 references
0 references
0.9243404
0 references
0.9212152
0 references