Von Neumann algebra invariants of Dirac operators (Q1379608)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Von Neumann algebra invariants of Dirac operators |
scientific article; zbMATH DE number 1121253
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Von Neumann algebra invariants of Dirac operators |
scientific article; zbMATH DE number 1121253 |
Statements
Von Neumann algebra invariants of Dirac operators (English)
0 references
29 June 1999
0 references
A Novikov-Shubin invariant associated to the Dirac operator on \(L^2\)-spinors on the universal covering space of a compact Riemannian spin manifold is studied. This is a conformal invariant but it does depend on the conformal class. If this invariant is positive one can define the von Neumann algebra determinant of the Dirac Laplacian. A von Neumann algebra eta invariant associated to the Dirac operator provides in certain cases an obstruction to the existence of metrics of positive scalar curvature.
0 references
Novikov-Shubin invariant
0 references
Dirac operator
0 references
von Neumann algebra
0 references
eta invariant
0 references
0 references