Computations with Gohberg-Semencul-type formulas for Toeplitz matrices (Q1381279)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Computations with Gohberg-Semencul-type formulas for Toeplitz matrices |
scientific article; zbMATH DE number 1129385
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Computations with Gohberg-Semencul-type formulas for Toeplitz matrices |
scientific article; zbMATH DE number 1129385 |
Statements
Computations with Gohberg-Semencul-type formulas for Toeplitz matrices (English)
0 references
17 March 1998
0 references
An elementary approach to derive all Gohberg-Semencul-type formulae for the representation of the inverse of a Toeplitz matrix is presented. It is proven that there exists a Gohberg-Semencul-type formula such that the generating vectors are pairwise orthogonal. On the basis of this analysis new fast and stable algorithms for solving linear Toeplitz systems are derived.
0 references
Toeplitz matrix
0 references
Gohberg-Semencul-type formula
0 references
linear Toeplitz systems
0 references
0 references
0.90729046
0 references
0.88559896
0 references
0.88224643
0 references
0.8806328
0 references
0.8796497
0 references
0.87944996
0 references
0.87942284
0 references
0.87672365
0 references