Chebyshev splines and shape parameters (Q1381383)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Chebyshev splines and shape parameters |
scientific article; zbMATH DE number 1129534
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Chebyshev splines and shape parameters |
scientific article; zbMATH DE number 1129534 |
Statements
Chebyshev splines and shape parameters (English)
0 references
6 July 1998
0 references
The splines considered depend on two parameters \(p\), \(\alpha\), and are defined on \([0, 1]\) as those polynomials that satisfy \[ F'''(0)/p- 2\alpha F''(0)/p^2+ 2\alpha^2F'(0)/p^3= F'''(1)/(p+\alpha)- 2\alpha F''(1)/(p+ \alpha)^2+ 2\alpha^2 F'(1)/(p+ \alpha)^3; \] one applies to this space the formulas that give derivatives of vector functions in term of the Bézier points. The authors derive the corresponding subdivision algorithm and show the influence of the parameters on the shape of the spline function graphs.
0 references
Chebyshev splines
0 references
shape parameters
0 references
Bézier points
0 references
subdivision algorithm
0 references