Some mean values related to the arithmetic-geometric mean (Q1381586)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some mean values related to the arithmetic-geometric mean |
scientific article; zbMATH DE number 1130503
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some mean values related to the arithmetic-geometric mean |
scientific article; zbMATH DE number 1130503 |
Statements
Some mean values related to the arithmetic-geometric mean (English)
0 references
19 July 1998
0 references
Let \[ r_n(t)= (a^n\cos^2t+ b^n\sin^2 t)^{1/n}\qquad (n\neq 0,\text{ integer}); \] \[ r_0(t)= \lim_{n\to\infty} r_n(t)= a^{\cos^2 t}b^{\sin^2 t} \qquad (a, b>0). \] For a strictly monotonic function \(p:\mathbb{R}^+\to\mathbb{R}\) let \(M_{p,n}(a,b)= p^{-1}\left({1\over 2\pi} \int^{2\pi}_0 p(r_n(t))dt\right)\). For \(n\in\{-1,+1,+2\}\) earlier investigations by H. Haruki and T. M. Rassias characterized the functions \(p\) for which \(M_{p,n}\) is one of the: arithmetic-geometric mean, arithmetic mean, geometric mean, or the square root mean. In this interesting paper, the author gives unique proofs for arbitrary \(n\). For this purpose certain functional equations, recurrence relations and connections with the complete elliptic integrals are exploited.
0 references
inequalities
0 references
arithmetic-geometric mean
0 references
elliptic integrals
0 references