A quasiconformal extension of quasi-Möbius embeddings (Q1386566)

From MaRDI portal





scientific article; zbMATH DE number 1155286
Language Label Description Also known as
English
A quasiconformal extension of quasi-Möbius embeddings
scientific article; zbMATH DE number 1155286

    Statements

    A quasiconformal extension of quasi-Möbius embeddings (English)
    0 references
    0 references
    5 January 1999
    0 references
    An ordered quadruple \(T= z_1z_2 z_3z_4\) of pairwise distinct points is called a tetrad, and the quantity \(r(T)= [z_1 z_2][z_3 z_4]/[z_1 z_3][z_2 z_4]\) is called its characteristic, where \([xy]\) denotes the spherical distance in \(\overline \mathbb{R}^2\). Let \(\omega\) be a homeomorphism of the semiaxis \([0,+\infty)\) onto itself. A topological embedding \(f: D\to\overline \mathbb{R}^2\) is called \(\omega\)-quasi-Möbius if the estimate \[ r(f(T))\leq \omega(r(T)) \] holds for any tetrad on \(D\). A curvilinear \(n\)-gon is called \(k\)-quasiconformal if each of its sides is a \(k\)-quasiconformal arc. The main result of this paper is that if a domain \(D\subset\overline \mathbb{R}^2\) is a \(k\)-quasiconformal \(n\)-gon, then any orientation-preserving \(\omega\)-quasi-Möbius embedding admits a \(k\)-quasiconformal extension to the whole \(\overline \mathbb{R}^2\), where \(k^*\) depends only on \(k\) and \(\omega\).
    0 references
    \(k\)-quasi-conformal \(n\)-gon
    0 references
    \(\omega\)-quasi-Möbius embedding
    0 references
    \(k\)-quasi-conformal extension
    0 references
    0 references

    Identifiers