A quasiconformal extension of quasi-Möbius embeddings (Q1386566)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A quasiconformal extension of quasi-Möbius embeddings |
scientific article; zbMATH DE number 1155286
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A quasiconformal extension of quasi-Möbius embeddings |
scientific article; zbMATH DE number 1155286 |
Statements
A quasiconformal extension of quasi-Möbius embeddings (English)
0 references
5 January 1999
0 references
An ordered quadruple \(T= z_1z_2 z_3z_4\) of pairwise distinct points is called a tetrad, and the quantity \(r(T)= [z_1 z_2][z_3 z_4]/[z_1 z_3][z_2 z_4]\) is called its characteristic, where \([xy]\) denotes the spherical distance in \(\overline \mathbb{R}^2\). Let \(\omega\) be a homeomorphism of the semiaxis \([0,+\infty)\) onto itself. A topological embedding \(f: D\to\overline \mathbb{R}^2\) is called \(\omega\)-quasi-Möbius if the estimate \[ r(f(T))\leq \omega(r(T)) \] holds for any tetrad on \(D\). A curvilinear \(n\)-gon is called \(k\)-quasiconformal if each of its sides is a \(k\)-quasiconformal arc. The main result of this paper is that if a domain \(D\subset\overline \mathbb{R}^2\) is a \(k\)-quasiconformal \(n\)-gon, then any orientation-preserving \(\omega\)-quasi-Möbius embedding admits a \(k\)-quasiconformal extension to the whole \(\overline \mathbb{R}^2\), where \(k^*\) depends only on \(k\) and \(\omega\).
0 references
\(k\)-quasi-conformal \(n\)-gon
0 references
\(\omega\)-quasi-Möbius embedding
0 references
\(k\)-quasi-conformal extension
0 references
0 references
0.91492164
0 references