Borel transformations on Dirichlet spaces (Q1387293)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Borel transformations on Dirichlet spaces |
scientific article; zbMATH DE number 1158870
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Borel transformations on Dirichlet spaces |
scientific article; zbMATH DE number 1158870 |
Statements
Borel transformations on Dirichlet spaces (English)
0 references
11 October 1998
0 references
Let \(f(z)=\displaystyle\sum_{k=0}^\infty(a_{k}/k!)z^{k}\) be an entire function of exponential type and let \(\gamma(t):=\displaystyle\sum_{k=0}^\infty a_{k}/t^{k+1}\) be the Borel transform of \(f\). Let \(D\) denote the convex hull of the singularities of \(\gamma\). The main result of the paper is the following theorem. Assume that the curvature of \(\partial D\) is bounded away from zero and infinity. Then the following conditions are equivalent: (i) \(\int_0^{2\pi}\int_0^\infty| f(re^{i\varphi})| ^2 e^{-2rh(\varphi)}r^{3/2}drd\varphi=:\| f\| _2^2<+\infty\), where \(h(\varphi):=\limsup_{r\to+\infty}(1/r)\log| f(re^{i\varphi})| \) denotes the growth indicatrix of \(f\); (ii) \(\int_{\mathbb C\setminus D}| \gamma'(\xi)| ^2dV(\xi)= :\| \gamma\| _1^2<+\infty\) (i.e. \(\gamma\) belongs to the Dirichlet space). Moreover, there exist constants \(C_1\), \(C_2>0\) such that \(C_1\| \gamma\| _1\leq\| f\| _2\leq C_2\| \gamma\| _1\).
0 references
entire function of exponential type
0 references
Borel transform
0 references
Dirichlet space
0 references