Asymptotics of eigenvalues and eigenfunctions of the Sturm-Liouville problem with a small parameter and a spectral parameter in the boundary condition (Q1387375)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotics of eigenvalues and eigenfunctions of the Sturm-Liouville problem with a small parameter and a spectral parameter in the boundary condition |
scientific article; zbMATH DE number 1158936
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotics of eigenvalues and eigenfunctions of the Sturm-Liouville problem with a small parameter and a spectral parameter in the boundary condition |
scientific article; zbMATH DE number 1158936 |
Statements
Asymptotics of eigenvalues and eigenfunctions of the Sturm-Liouville problem with a small parameter and a spectral parameter in the boundary condition (English)
0 references
11 January 1999
0 references
Consider the following Sturm-Liouville eigenvalue problem \[ -u''(x)+ q(x) u(x)= \lambda u(x) \tag{1} \] \[ u'(0)= 0,\;u'(\pi)- m\lambda u(\pi) =0 \tag{2} \] where \(m\) is a physical parameter and \(\lambda\) is a spectral parameter, appearing also in the second boundary condition. The author studies the asymptotic behavior of eigenvalues and eigenfunctions of the problem as \(m\) tends to zero. The author presents the spectral problem as an eigenvalue problem for a linear operator pencil in the Hilbert space \(H=L_2 \oplus C\).
0 references
Sturm-Liouville eigenvalue problem
0 references
asymptotic behavior
0 references
eigenvalues
0 references
eigenfunctions
0 references
linear operator pencil
0 references