Oscillating multipliers on noncompact Riemannian symmetric space \(\mathrm{SL}(3,\mathbb{H})/\mathrm{Sp}(3)\) (Q1389916)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Oscillating multipliers on noncompact Riemannian symmetric space \(\mathrm{SL}(3,\mathbb{H})/\mathrm{Sp}(3)\) |
scientific article; zbMATH DE number 1174356
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Oscillating multipliers on noncompact Riemannian symmetric space \(\mathrm{SL}(3,\mathbb{H})/\mathrm{Sp}(3)\) |
scientific article; zbMATH DE number 1174356 |
Statements
Oscillating multipliers on noncompact Riemannian symmetric space \(\mathrm{SL}(3,\mathbb{H})/\mathrm{Sp}(3)\) (English)
0 references
20 February 2001
0 references
Let \(M\) be the Riemannian symmetric space \(\mathrm{SL}(2,{\mathbb H})/\mathrm{Sp}(3)\). The author studies the convolution operator \(T_{a,b}\) on \(M\) associated with the radial multipliers \(m_{a,b}\), defined by \[ m_{a,b}(\lambda)=(\|\lambda\|^{2}+\|\rho\|^{2})^{-b/2} e^{i(\|\lambda\|^{2}+\|\rho\|^{2})^{a/2}},\quad \Re b\geq 0,\quad a>0. \] The main results of the paper are conditions for the operator \(T_{a,b}\) to be bounded on \(L^{p}(M)\). These results are an extension of results of \textit{S. Giulini} and \textit{S. Meda} [J. Reine Angew. Math. 409, 93--105 (1990; Zbl 0696.43007)] for noncompact Riemannian symmetric spaces of rank one.
0 references
Riemannian symmetric spaces
0 references
convolution operator
0 references
multipliers
0 references
Abel transform
0 references
0.8994414
0 references
0.8955235
0 references
0.8931809
0 references
0.88861215
0 references
0.8807454
0 references
0.8774546
0 references
0.8734278
0 references