Cliques in dense GF(\(q\))-representable matroids (Q1405118)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Cliques in dense GF(\(q\))-representable matroids |
scientific article; zbMATH DE number 1970690
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Cliques in dense GF(\(q\))-representable matroids |
scientific article; zbMATH DE number 1970690 |
Statements
Cliques in dense GF(\(q\))-representable matroids (English)
0 references
25 August 2003
0 references
The authors prove the following conjecture of \textit{J. P. S. Kung} [Contemp. Math. 147, 21-61 (1993; Zbl 0791.05018)]: For any field \(F\) and clique \(K_n\) there exists an integer \(\lambda\) such that, if \(M\) is a simple \(F\)-representable matroid with no \(M(K_n)\)-minor, then \(|E(M)|\leq\lambda r(M)\).
0 references
0.9226724
0 references
0.91840094
0 references
0 references
0.9041255
0 references
0.9041255
0 references
0.88201416
0 references
0.8812468
0 references
0.8722532
0 references
0.87104714
0 references