Asymptotics for sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds. (Q1405949)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotics for sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds. |
scientific article; zbMATH DE number 1977247
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotics for sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds. |
scientific article; zbMATH DE number 1977247 |
Statements
Asymptotics for sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds. (English)
0 references
9 January 2004
0 references
Let \(M\) be a compact Riemannian manifold of dimension \(n\geq 3\) without boundary. Work of \textit{O. Druet, E. Hebey} and \textit{M. Vaugon} [Trans. Am. Math. Soc. 353, No. 1, 269--289 (2001; Zbl 0968.58012)] shows that for any \(\varepsilon > 0\) and for every \(u\) in the Sobolev space \(H^2_1(M)\): \[ \left(\int_M | u| ^{2n/(n-2)}\right)^{(n-2)/n} \leq (K_n + \varepsilon)\int_M | \nabla u| ^2 + B_\varepsilon\left(\int_M | u| \right)^2 \] where \(K_n={4 \over n(n-2)\omega_n^{2/n}}\) and \(\omega_n = \text{vol}(S^n)\). It is known that the best \(B_\varepsilon\) in this Sobolev-Poincaré inequality has a finite limit for \(\varepsilon \to 0\) if \(n=3\) or if the scalar curvature of \(M\) is everywhere negative. The main result of the paper is Theorem. Let \(n\geq 4\) and let the maximum \(S\) of the scalar curvature be positive. Then there exists \(C(n)>0\), depending only on \(n\), such that \[ B_\varepsilon = C(n)\cdot S^{(n+2)/2}\cdot \varepsilon^{-(n-4)(n+2)/(2(n-2))} + o(\varepsilon^{-(n-4)(n+2)/(2(n-2))}) \] if \(n\geq 5\) and \[ B_\varepsilon = C(4)\cdot S^3\cdot | \ln\varepsilon| ^3 + o(| \ln\varepsilon| ^3) \] if \(n=4\).
0 references
Sobolev-Poincaré inequality
0 references
Sobolev embedding theorem
0 references
best constants
0 references
0 references
0.84492254
0 references
0.8386091
0 references
0.83731395
0 references
0.8146301
0 references
0.8110897
0 references
0.80981755
0 references
0.8093566
0 references
0.80818546
0 references