Existence of homoclinic solutions for Hamiltonian systems (Q1405956)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existence of homoclinic solutions for Hamiltonian systems |
scientific article; zbMATH DE number 1977251
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existence of homoclinic solutions for Hamiltonian systems |
scientific article; zbMATH DE number 1977251 |
Statements
Existence of homoclinic solutions for Hamiltonian systems (English)
0 references
17 March 2004
0 references
Using variational methods, the existence of homoclinic solutions is shown for the Hamiltonian system \(Ju'(x)+Mu(x)-\nabla_uF(x,u(x))=\lambda u(x)\), where \(u : \mathbb{R}\to \mathbb{R}^{2N}\), \(J\), \(M\) are matrices such that \(J=-J^T=-J^{-1}\), \(M^T=M\) and \(F\) is a Carathéodory nonlinearity satisfying addition properties.
0 references
homoclinic solutions
0 references
variational methods
0 references
0.97621125
0 references
0.9688951
0 references
0.96203965
0 references
0.9528579
0 references
0.95237815
0 references
0.94628966
0 references
0.9458144
0 references