A computational approach for the analytical solving of a Dirichlet-type problem for third order partial differential equations (Q1406065)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A computational approach for the analytical solving of a Dirichlet-type problem for third order partial differential equations |
scientific article; zbMATH DE number 1977942
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A computational approach for the analytical solving of a Dirichlet-type problem for third order partial differential equations |
scientific article; zbMATH DE number 1977942 |
Statements
A computational approach for the analytical solving of a Dirichlet-type problem for third order partial differential equations (English)
0 references
9 September 2003
0 references
Consider a domain \(\Omega= \{(x,\phi); x\in D\subset \mathbb{R}^2, \phi\in(0, 2\pi)\}\), and the differential operator \[ A= \Biggl({\partial^2\over \partial p\partial\phi}\Biggr) \Biggl[\sin(\phi)\Biggl({\partial\over\partial x_1}\Biggr)+ \cos(\phi)\Biggl({\partial\over\partial x_2}\Biggr)\Biggr];\;\Biggl({\partial\over\partial p}\Biggr)= \cos(\phi)\Biggl({\partial\over\partial x_1}\Biggr)- \sin(\phi)\Biggl({\partial\over\partial x_2}\Biggr). \] The problem is to find an approximated solution \(u\) of the inverse problem \[ Au(x,\phi)= F(x,\phi),\quad\forall(x,\phi)\in \Omega,\quad u(x,\phi)|_{\delta D\times (0,2\pi)}= 0. \] When \(D\) is the unit disk of \(\mathbb{R}^2\), the authors give an algorithm, using MAPLE.
0 references
Galerkin method
0 references
Symbolic computation
0 references
Integral geometry
0 references
inverse problem
0 references
algorithm
0 references
MAPLE
0 references
0 references
0.9239892
0 references
0.90201557
0 references
0.8979004
0 references
0.8886596
0 references
0.88349664
0 references