Harmonic analysis of random fractional diffusion-wave equations. (Q1408297)

From MaRDI portal





scientific article; zbMATH DE number 1981435
Language Label Description Also known as
English
Harmonic analysis of random fractional diffusion-wave equations.
scientific article; zbMATH DE number 1981435

    Statements

    Harmonic analysis of random fractional diffusion-wave equations. (English)
    0 references
    0 references
    0 references
    15 September 2003
    0 references
    The authors consider the fractional diffusion-wave equations with random initial conditions \[ {\partial^\beta u\over\partial t^\beta}= -\mu(I- \Delta)^{\gamma/2}(-\Delta)^{\alpha/2} u,\quad\mu> 0, \] where \(u= u(t,x)\), \(t\in\mathbb{R}^1\), \(x\in\mathbb{R}^n\), is assumed to be a function in time, for \(0<\beta\leq 1\), \(u(t,x)|_{t=0}= u_0(x)= \xi(x)\), \(x\in\mathbb{R}^n\) while for \(1< \beta\leq 2\), \[ u(t,x)|_{t=0}= u_0(x)= \xi(x),\quad{\partial\over\partial t} u(t,x)|_{t=0}= u_1(x)= \eta(x),\;x\in\mathbb{R}^n, \] where \(\xi(x)\) and \(\eta(x)\) are real measurable random fields defined on a complete probability space \((\Omega, F, P)\). The authors present the Green function and spectral representations of the mean-square solutions.
    0 references
    random data
    0 references
    spectral representation
    0 references
    Mittag-Leffler function
    0 references
    Volterra-type fractional integral equation
    0 references
    Green function
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references