Separation principles and Riemann-Hilbert problems (Q1409783)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Separation principles and Riemann-Hilbert problems |
scientific article; zbMATH DE number 1995500
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Separation principles and Riemann-Hilbert problems |
scientific article; zbMATH DE number 1995500 |
Statements
Separation principles and Riemann-Hilbert problems (English)
0 references
22 October 2003
0 references
Let \(w_\pm\) be the holomorphic functions on the unit disk \(D\subset \mathbb{C}\) and let \(M_t=\{x+if(t,x)\},\;x\in R,\;t\in\partial D\) where \(f(t,x)\) is real-valued. For a given subset \(A\) in the Hardy space \(H^1\) denote by \(A_+=\{w_+\in A, v_+(t)\geq f(t,u_+(t))\;a.e.\;on\;\partial D\}\) and \(A_-=\{w_-\in A, v_-(t)\geq f(t,u_-(t))\;a.e.\;on\;\partial D\}\) the sets of upper \(w_+=u_++iv_+\) and lower \(w_-=u_-+iv_-\) functions. The author compares the values of upper and lower functions in inner points of \(D\). In particular are studied the conditions on the class \(A\) and separating curve \(M_t\) which guarantee that the values \(w_+ (0)\) of upper functions lie ''above'' the values \(w_- (0)\) of lower functions.
0 references
holomorphic functions
0 references
normal family
0 references
separation principle
0 references
Riemann-Hilbert problem
0 references
0.90513766
0 references
0.89421344
0 references
0 references
0 references
0.8778872
0 references
0.8775027
0 references