Complete function systems and decomposition results arising in Clifford analysis (Q1409785)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Complete function systems and decomposition results arising in Clifford analysis |
scientific article; zbMATH DE number 1995502
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Complete function systems and decomposition results arising in Clifford analysis |
scientific article; zbMATH DE number 1995502 |
Statements
Complete function systems and decomposition results arising in Clifford analysis (English)
0 references
22 October 2003
0 references
The authors construct a Clifford analytic complete system of functions in the generalized Bergman \(p\)-space \(B_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell} (\Omega)\) where \(\Omega\) is a sufficiently smooth unbounded domain in \(\mathbb{R}^n\). The decomposition \(W_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell-1}(\Omega) = B_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell}(\Omega)\oplus D^\ell (W_{{\mathcal{C}\ell}_{ 0, n}}^{0, p, 2\ell-1}(\Omega)), \ell<n, \frac{n}{n-\ell+1}<p<\infty\) for the Sobolew space \(W_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell-1}\) is considered. Here \(D^\ell\) is the \(\ell\)-th iterate of the Dirac operator.
0 references
Clifford analysis
0 references
complete function systems
0 references
Bergman spaces
0 references
decomposition spaces
0 references
elliptic boundary value problems
0 references
Dirac operators and hyperbolas
0 references