Complete function systems and decomposition results arising in Clifford analysis (Q1409785)

From MaRDI portal





scientific article; zbMATH DE number 1995502
Language Label Description Also known as
English
Complete function systems and decomposition results arising in Clifford analysis
scientific article; zbMATH DE number 1995502

    Statements

    Complete function systems and decomposition results arising in Clifford analysis (English)
    0 references
    0 references
    22 October 2003
    0 references
    The authors construct a Clifford analytic complete system of functions in the generalized Bergman \(p\)-space \(B_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell} (\Omega)\) where \(\Omega\) is a sufficiently smooth unbounded domain in \(\mathbb{R}^n\). The decomposition \(W_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell-1}(\Omega) = B_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell}(\Omega)\oplus D^\ell (W_{{\mathcal{C}\ell}_{ 0, n}}^{0, p, 2\ell-1}(\Omega)), \ell<n, \frac{n}{n-\ell+1}<p<\infty\) for the Sobolew space \(W_{{\mathcal{C}\ell}_{ 0, n}}^{p,\ell-1}\) is considered. Here \(D^\ell\) is the \(\ell\)-th iterate of the Dirac operator.
    0 references
    Clifford analysis
    0 references
    complete function systems
    0 references
    Bergman spaces
    0 references
    decomposition spaces
    0 references
    elliptic boundary value problems
    0 references
    Dirac operators and hyperbolas
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references