\({\mathbb Z}_n\)-equivariant Goeritz matrices for periodic links (Q1412390)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \({\mathbb Z}_n\)-equivariant Goeritz matrices for periodic links |
scientific article; zbMATH DE number 2002264
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \({\mathbb Z}_n\)-equivariant Goeritz matrices for periodic links |
scientific article; zbMATH DE number 2002264 |
Statements
\({\mathbb Z}_n\)-equivariant Goeritz matrices for periodic links (English)
0 references
10 November 2003
0 references
\(n\)-periodic covers \(l^{(n)}\) over an oriented link \(l\) are studied. The author outlines a block-wise Goeritz matrix for \(l^{(n)}\); this is a relation matrix for the group \(H_1 (M_2(l^{(n)}), \mathbb{Z})\). Also the reduced Alexander polynomial of \(l^{(n)}\) is calculated.
0 references
covering
0 references
periodic link
0 references
Goeritz matrix
0 references
reduced Alexander polynomial
0 references