A necessary and sufficient criteria for the existence of the least squares estimate for a 3-parametric exponential function. (Q1412578)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A necessary and sufficient criteria for the existence of the least squares estimate for a 3-parametric exponential function. |
scientific article; zbMATH DE number 2009081
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A necessary and sufficient criteria for the existence of the least squares estimate for a 3-parametric exponential function. |
scientific article; zbMATH DE number 2009081 |
Statements
A necessary and sufficient criteria for the existence of the least squares estimate for a 3-parametric exponential function. (English)
0 references
25 November 2003
0 references
To let the 3-parametric exponential model \(y(t;a,b,c)=a+be^{ct}\) fit the given data \(\{(t_n,y_n):n=1,\ldots,m\}\) for given weights \(p_n\), the sum \(\sum_{n=1}^m p_n [y_n-y(t_n;a,b,c)]^2\) is minimized over \(a,b,c\) with \(bc\neq0\). The minimizing solution may be unique, may not exist, or there may be multiple solutions. It is proved in this paper that no solution exists if and only if the data points are on a line \(y=kt+l\), \(k\neq0\) or \(y_2=\cdots=y_m\) or \(y_1=\cdots=y_{m-1}\). Also a suggestion is made for a good starting point \((a_0,b_0,c_0)\) for the optimization procedure.
0 references
exponential approximation
0 references
nonlinear least squares
0 references
fitting
0 references
exponential model
0 references
0 references
0 references
0 references
0 references
0 references
0.8777679
0 references
0.8698169
0 references
0.8422035
0 references
0.83331746
0 references
0.8164954
0 references
0.8162072
0 references
0.81083834
0 references