\(k\)-fold anti-invariant subspaces of a linear mapping. (Q1414691)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(k\)-fold anti-invariant subspaces of a linear mapping. |
scientific article; zbMATH DE number 2013040
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(k\)-fold anti-invariant subspaces of a linear mapping. |
scientific article; zbMATH DE number 2013040 |
Statements
\(k\)-fold anti-invariant subspaces of a linear mapping. (English)
0 references
4 December 2003
0 references
Given a nonsingular linear transformation \(\pi\) on a finite dimensional vector space, a subspace \(T\) is called \(k\)-fold anti-invariant if \[ T+T\pi +\ldots +T\pi^k =T \oplus T\pi \oplus \ldots \oplus T\pi^k. \] A necessary and sufficient condition for the maximal dimension of such subspace \(T\) is given in terms of degrees of the invariant divisors of \(\pi\).
0 references
vector spaces
0 references
linear transformations
0 references
anti-invariant subspaces
0 references
canonical forms
0 references
maximal dimension
0 references
invariant divisors
0 references