A renorming of \(\ell_2\), rare but with the fixed-point property (Q1415249)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A renorming of \(\ell_2\), rare but with the fixed-point property |
scientific article; zbMATH DE number 2012668
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A renorming of \(\ell_2\), rare but with the fixed-point property |
scientific article; zbMATH DE number 2012668 |
Statements
A renorming of \(\ell_2\), rare but with the fixed-point property (English)
0 references
3 December 2003
0 references
The authors consider the following problem: (P) Does every renorming of \(l_2\) have the fixed point property? The purpose of this paper is to give an overview of this question and an example of a renorming of \(l_2\) which seems to fall out of the scope of all known sufficient conditions for the fixed point property. The main results of this paper are interesting and nice.
0 references
fixed point property
0 references
renorming of \(l_2\)
0 references
normial structure
0 references
orthogonal convexity
0 references