A Littlewood-Paley type inequality (Q1416078)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Littlewood-Paley type inequality |
scientific article; zbMATH DE number 2016633
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Littlewood-Paley type inequality |
scientific article; zbMATH DE number 2016633 |
Statements
A Littlewood-Paley type inequality (English)
0 references
2003
0 references
Let \(n\geq 3\) and \(B\) be the unit ball in \(\mathbb{R}^{n}\) and \(S=\partial B\). The following theorem is proved: Let \(u\) be a harmonic function in the unit ball \(B\) and \(p\in [(n-2)/(n-1),1]\). Then there is a constant \(C=C(p,n)\) such that \[ \sup_{0\leq r<1}\int_{S} | u(r\zeta)| ^{p} \,d\sigma(\zeta)\leq C\left( | u(0)| ^{p}+\int_{B}| \nabla u(x)| ^{p}(1-| x| )^{p} \,dV(x)\right). \]
0 references
harmonic functions
0 references
Littlewood-Paley inequality
0 references
Hardy space
0 references
maximal function
0 references
0 references
0 references
0 references
0.93570757
0 references
0.9281424
0 references
0 references
0.9214598
0 references
0 references
0.91597164
0 references
0 references