An eigenvalue estimate for the \(\overline{\partial}\)-Laplacian (Q1423997)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An eigenvalue estimate for the \(\overline{\partial}\)-Laplacian |
scientific article; zbMATH DE number 2052864
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An eigenvalue estimate for the \(\overline{\partial}\)-Laplacian |
scientific article; zbMATH DE number 2052864 |
Statements
An eigenvalue estimate for the \(\overline{\partial}\)-Laplacian (English)
0 references
8 March 2004
0 references
Let \(F\) be a holomorphic line bundle over an \(n\)-dimensional compact holomorphic manifold \(X\). Fix a Hermitian metric on \(X\) and a line bundle metric on \(F\). Let \(\square=\bar\partial \bar\partial^*+\bar\partial^*\bar\partial\) be the associated Laplacian. Let \(h_{\leq\lambda}^{(p,q)}(F)\) be the number of eigenvalues (counted with multiplicity) of \(\square\) on \((p,q)\) forms with values in \(F\) which are less than or equal to \(\lambda\). The author gives an asymptotic estimate for the distribution of eigenvalues: Theorem 1.1: Assume \(L\) is a line bundle with a metric of semipositive curvature. Let \(E\) be an arbitrary line bundle. Take \(q\geq1\). If \(0\leq\lambda\leq k\), then \(h_{\leq\lambda}^{n,q}(L^k\otimes E)\leq C(\lambda+1)^qk^{n-q}\). If \(1\leq k\leq\lambda\), then \(h_{\leq\lambda}^{n,q}(L^k\otimes E)\leq C\lambda^n\). Note: By replacing \(E\) by \(E\otimes K^{-1}\), a similar estimate holds for \(h_{\leq\lambda}^{0,q}\). One obtains thereby the estimate \(h^{0,q}_{\leq 0}(L^k\otimes E)\leq Ck^{n-q}\) for the dimensions of the Dolbeault cohomology groups.
0 references
0.9504512
0 references
0 references
0.94121015
0 references
0 references
0.93195033
0 references
0.9294369
0 references