Curve interpolation based on Catmull-Clark subdivision scheme (Q1425343)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Curve interpolation based on Catmull-Clark subdivision scheme |
scientific article; zbMATH DE number 2058143
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Curve interpolation based on Catmull-Clark subdivision scheme |
scientific article; zbMATH DE number 2058143 |
Statements
Curve interpolation based on Catmull-Clark subdivision scheme (English)
0 references
16 March 2004
0 references
The authors propose an algorithm for interpolating cubic \(B\)-splines curves with Catmull-Clark subdivision surfaces, where it is necessary only to guarantee the symmetry of polygons on both sides of the control polygon edges of interpolated curves. The process is convergent and the limit surface is \(C^2\) everywhere except for a finite number of points. Sharp creases can also be modeled on the limit subdivision surface by duplicating the vertices of the tagged edges of the initial mesh.
0 references
curve interpolation
0 references
subdivision scheme
0 references