The inverse eigenvalue problem for symmetric doubly stochastic matrices. (Q1426293)

From MaRDI portal





scientific article; zbMATH DE number 2056678
Language Label Description Also known as
English
The inverse eigenvalue problem for symmetric doubly stochastic matrices.
scientific article; zbMATH DE number 2056678

    Statements

    The inverse eigenvalue problem for symmetric doubly stochastic matrices. (English)
    0 references
    0 references
    0 references
    14 March 2004
    0 references
    The authors study the possible spectra of symmetric doubly stochastic and related matrices. It is proved that a real \(n\)-tuple \(1\geq \lambda_2 \geq \cdots \geq \lambda_n\) such that \[ \frac{1}{n} +\frac{\lambda_2}{n(n-1)}+\frac{\lambda_3}{(n-1)(n-2)}+\ldots +\frac{\lambda_n}{2(1)}\geq 0 \] is the spectrum of a symmetric doubly stochastic matrix.
    0 references
    inverse eigenvalue problem
    0 references
    spectrum
    0 references
    doubly stochastic matrix
    0 references
    0 references

    Identifiers