\(L_{\infty}\) algebra representations (Q1431353)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L_{\infty}\) algebra representations |
scientific article; zbMATH DE number 2069038
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L_{\infty}\) algebra representations |
scientific article; zbMATH DE number 2069038 |
Statements
\(L_{\infty}\) algebra representations (English)
0 references
27 May 2004
0 references
An \(L_\infty\)-algebra on a differential graded vector space \(L\) may be described by a coderivation \(D\) of degree \(+1\) on the cofree commutative coalgebra \(\wedge^* sL\), with \(D^2= 0\). A notion of left module over \(L_\infty\) algebras appeared in [\textit{T. Lada} and \textit{M. Markl}, Strongly homotopy Lie algebras, Commun. Algebra, 23, No. 6, 2147--2161 (1995; Zbl 0999.17019)]. In the paper under review, the author proves that, if \(L\) is an \(L_\infty\)-algebra and \(M\) a left \(L\)-module, then \(L\oplus M\) has an \(L_\infty\)-algebra structure. An explicit description in terms of a collection of linear maps \(j_k: \bigotimes^k(L\oplus M)\to L\oplus M\) is given. This is the homotopy theoretic version of a classical similar result in the setting of modules over Lie algebras.
0 references
\(L_\infty\) algebra
0 references
\(L_\infty\) module
0 references
0 references
0.9163628
0 references
0 references
0.9079984
0 references