Eigenstructure of the equilateral triangle. II: The Neumann problem (Q1432039)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Eigenstructure of the equilateral triangle. II: The Neumann problem |
scientific article; zbMATH DE number 2074134
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Eigenstructure of the equilateral triangle. II: The Neumann problem |
scientific article; zbMATH DE number 2074134 |
Statements
Eigenstructure of the equilateral triangle. II: The Neumann problem (English)
0 references
14 June 2004
0 references
Summary: Lame's formulas for the eigenvalues and eigenfunctions of the Laplacian with Neumann boundary conditions on an equilateral triangle are derived using direct elementary mathematical techniques. They are shown to form a complete orthonormal system. Various properties of the spectrum and nodal lines are explored. Implications for related geometries are considered. Part I, cf. SIAM Rev. 45, No. 2, 267--287 (2003; Zbl 1122.35311), Part III, see Int. J. Math. Math. Sci. 2004, No. 13--16, 807--825 (2004; Zbl 1123.35008).
0 references
0.9414074
0 references
0 references
0.9059976
0 references
0.89871013
0 references
0.88876987
0 references
0.8718777
0 references