Nonintegrability of the \(ABC\)-flow for \(A=B=C\). (Q1432118)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nonintegrability of the \(ABC\)-flow for \(A=B=C\). |
scientific article; zbMATH DE number 2074443
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nonintegrability of the \(ABC\)-flow for \(A=B=C\). |
scientific article; zbMATH DE number 2074443 |
Statements
Nonintegrability of the \(ABC\)-flow for \(A=B=C\). (English)
0 references
15 June 2004
0 references
The author proves that the system \[ \dot x=A\sin z+B\cos y,\quad \dot y=B\sin x+A\cos z,\quad \dot z=C\sin y+B\cos x \] has no real-meromorphic first integral on the torus \(T^3\) in the case \(A^2=B^2=C^2\).
0 references
magnetohydrodynamics
0 references
incompressible liquid
0 references
meromorphic first integral
0 references
computer simulation
0 references
0.94330716
0 references
0.9303243
0 references
0 references
0.8619201
0 references
0 references
0.82191956
0 references
0.82180107
0 references