Spectral properties of operator logarithms (Q1434522)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Spectral properties of operator logarithms |
scientific article; zbMATH DE number 2078333
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Spectral properties of operator logarithms |
scientific article; zbMATH DE number 2078333 |
Statements
Spectral properties of operator logarithms (English)
0 references
7 July 2004
0 references
Let \(S_{\omega}=\{ z \in \mathbb C : z \neq 0, | \text{arg}z | <\omega \}\), \(0<\omega\leq \pi\), and let \(A\) be a linear injective operator on a Banach space \(X\). Suppose that \(\sigma(A) \subset {\overline {S_{\omega}}}\) and \(\sup \{ \| \lambda R(\lambda,A) \| : \lambda \notin {\overline {S_{\omega^{\prime}}}} \} <\infty\) for all \(\omega<\omega^{\prime}<\pi\) (in short: \(A \in \text{Sect}(\omega)\)). The number \(\omega_A=\min\{ \omega : A \in \text{Sect}(\omega)\}\) is called the spectral angle of \(A\). An arbitrary linear operator \(B: X \to X\) is said to be a strip operator of height \(\omega\) (in short: \(B \in \text{Strip}(\omega)\)), if \(\sigma(B) \subset \{ z \in \mathbb{C} : | \text{Im} z| \leq \omega \}\) and \(\sup \{ \| R(\lambda, B)\| : | \text{Im} \lambda | \geq \omega^{\prime} \} <\infty\) for all \(\omega^{\prime}>\omega\). Let \(\omega_{st}(B)=\min \{ \omega \geq 0 : B \in \text{Strip}(\omega) \}\). The main theorem states that if \(A \in \text{Sect}(\omega)\) is an injective operator such that \(\log A \in \text{Strip}(\omega^{\prime})\), \(\omega^{\prime} \geq 0\), then \(A \in \text{Sect}(\omega^{\prime})\). In particular, \(\omega_{st}(\log A)=\omega_A\). Moreover, \(A\) is uniquely determined by its logarithm \(\log A\).
0 references
operator calculus
0 references
sectorial operators
0 references
fractional powers
0 references
operator logarithm
0 references