Sur les points singuliers d'une série de Taylor situés sur le cercle de convergence. (Q1447202)

From MaRDI portal





scientific article; zbMATH DE number 2581825
Language Label Description Also known as
English
Sur les points singuliers d'une série de Taylor situés sur le cercle de convergence.
scientific article; zbMATH DE number 2581825

    Statements

    Sur les points singuliers d'une série de Taylor situés sur le cercle de convergence. (English)
    0 references
    1927
    0 references
    Die Arbeit enthält den Beweis folgender Sätze: 1. In \(f(z)=\sum a_nz^n\) komme eine Folge \(a_{n_i}\) (\(i= 1,2 \ldots\)) vor, für die \[ \lim_{i\to\infty}\{|a_{n_i}|+|a_{n_i+1}|+\cdots|a_{n_i+k-1}|\} = 0 \] ist. Dann hat \(f(z)\) auf seinem Konvergenzkreis entweder mindestens \(k+1\) Pole oder eine singuläre Stelle, die kein Pol ist. 2. ``Umkehrung'' eines Satzes von Lindelöf: \(f(z)=\sum a_nz^n\) sei im Einheitskreis, sowie im Winkelraum \(\vartheta<\varTheta<2\pi-\vartheta\) (\(\vartheta<\pi\)) regulär. \textit{Weiter besitze \(f(z)\) nur endlich viele singuläre Stellen, die alle auf dem Konvergenzkreis liegen}. Dann gibt es eine ganze Funktion \(\varphi(z)\), für die \(|\varphi(z)|< e^{(\theta+\varepsilon)r}\), \(z=re^{i\theta}\) für beliebiges \(\varepsilon>0\) und genügend große \(r\), derart, daß \(\varphi(n)=a_n\) ist. Könnte man den kursiv gedruckten Satz streichen, so läge die genaue Umkehrung eines Teiles eines Satzes von Lindelöf vor.
    0 references
    0 references

    Identifiers