The expression of hypergeometric series in terms of similar series. (Q1447383)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The expression of hypergeometric series in terms of similar series. |
scientific article; zbMATH DE number 2582012
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The expression of hypergeometric series in terms of similar series. |
scientific article; zbMATH DE number 2582012 |
Statements
The expression of hypergeometric series in terms of similar series. (English)
0 references
1927
0 references
Es wird bewiesen: Setzt man \[ {}_pf_q(\alpha_1\ldots\alpha_p;\varrho_1\ldots\varrho_q;x)= \sum_{r=0}^{\infty} \frac{\varGamma(\alpha_1+r)\ldots\varGamma(\alpha_p+r)} {\varGamma(\varrho_1+r)\ldots\varGamma(\varrho_p+r)}\cdot\frac{x^r}{r!}, \] so bestehen u. a. die Beziehungen \[ \begin{multlined} {}_pf_q(\alpha_1\ldots\alpha_p;\varrho_1-m\ldots\varrho_q;x)= \\ \varGamma(\varrho_1)\sum_{r=0}^{\infty}\frac{(-x)^r}{r!} \frac{\varGamma(r-m)}{\varGamma(-m)\varGamma(r+\varrho_1-m)} {}_pf_q(\alpha+r;\varrho+r;x) \end{multlined} \] und \[ \begin{multlined} {}_pf_q(\alpha_1+m\ldots\alpha_p;\varrho\ldots\varrho_q;x)= \\ \sum_{r=0}^{\infty}\frac{(-x)^r}{r!} \frac{\varGamma(r-m)\varGamma(\alpha_1+m)}{\varGamma(-m)\varGamma(r+\alpha_1)} {}_pf_q(\alpha+r;\varrho+r;x), \end{multlined} \] in denen eine große Zahl bekannter Relationen über Besselsche Funktionen und über klassische und Kummersche hypergeometrische Reihen als Spezialfälle enthalten sind.
0 references