A theorem on infinite products. (Q1450162)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A theorem on infinite products. |
scientific article; zbMATH DE number 2586095
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A theorem on infinite products. |
scientific article; zbMATH DE number 2586095 |
Statements
A theorem on infinite products. (English)
0 references
1926
0 references
Es wird bewiesen: Ist \[ f(x)=\prod_{n=1}^{\infty}\left(1+\frac{x^2}{a_n^2}\right)\qquad (0<a_1\leqq a_2\cdots) \] und \(\log f(x)\sim \lambda x\) (\(\lambda\neq 0\)), so ist \(a_n\sim \dfrac{\pi n}{\lambda}\).
0 references