Some axi-symmetric determinants with integers for elements. (Q1454357)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some axi-symmetric determinants with integers for elements. |
scientific article; zbMATH DE number 2590858
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some axi-symmetric determinants with integers for elements. |
scientific article; zbMATH DE number 2590858 |
Statements
Some axi-symmetric determinants with integers for elements. (English)
0 references
1925
0 references
Verf. betrachtet \(n\)-reihige Determinanten der Form \[ \varDelta^p(\alpha,n)= \begin{vmatrix} \alpha & 1 & 1 & 1 & \ldots \\ 1 & \binom{2p}{\hfill p}& \binom{2p+1}{\hfill p+1}& \binom{2p+2}{\hfill p+2}&\ldots\\ 1& \binom{2p+1}{p}& \binom{2p+2}{\hfill p+1}&\binom{2p+3}{\hfill p+2}&\ldots\\ 1& \binom{2p+2}{p}& \binom{2p+3}{\hfill p+1}& \binom{2p+4}{\hfill p+2}&\ldots\\ .&.&.&.&\ldots \end{vmatrix}, \] \[ \qquad s_n^p=\begin{vmatrix} \binom{2p}{\hfill p}& \binom{2p+1}{\hfill p+1}&\binom{2p+2}{\hfill p+2}&\ldots\\ \binom{2p+1}{p}&\binom{2p+2}{\hfill p+1}&\binom{2p+3}{\hfill p+2}&\ldots\\ \binom{2p+2}{p}&\binom{2p+3}{\hfill p+1}&\binom{2p+4}{\hfill p+2}&\ldots\\ .&.&.&\ldots \end{vmatrix} \] und die Summe \(\sigma(\varDelta)\) bzw. \(\sigma(s)\) der ``signed primary minors''.
0 references