On the product of \(L\)-functions. (Q1454693)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the product of \(L\)-functions. |
scientific article; zbMATH DE number 2591241
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the product of \(L\)-functions. |
scientific article; zbMATH DE number 2591241 |
Statements
On the product of \(L\)-functions. (English)
0 references
1925
0 references
Verf. gibt zuerst die asymptotischen Formel für \[ \frac 1{2T}\int _{-T}^T |\text{\textbf{Z}}_2(\sigma+it)|^2\,dt \] und die Formel \[ \int_2^T|\text{\textbf{Z}}_4(\sigma + it)|\,dt=O(T\log^4T), \;\;\text{gleichmäßig für} \;\;\frac 12\leqq \sigma \leqq 2, \;T>2, \] wo \({\mathbf{Z}}_k(s) = L_1(s)L_2(s)\ldots L_k(s)\) bedeutet. Dann leitet er nach \textit{Walfisz}scher Methode \[ L(\frac 12 +it)=O\left(|t|^{\frac {163}{988}}\right), \] ab und die asymptotische Formel für \(\sum\limits_{n\leqq x}(T_k(n))^\nu\), wo \[ \sum_{1}^\infty \frac {T_k(n)}{n^s}=(\zeta_{{\mathfrak K}}(s))^k \] und \({\mathfrak K}\) den Abelschen Körper bedeutet.
0 references