A new type of criteria for the first case of Fermat's last theorem. (Q1457371)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A new type of criteria for the first case of Fermat's last theorem. |
scientific article; zbMATH DE number 2595355
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A new type of criteria for the first case of Fermat's last theorem. |
scientific article; zbMATH DE number 2595355 |
Statements
A new type of criteria for the first case of Fermat's last theorem. (English)
0 references
1924
0 references
Als ein neues notwendiges Kriterium für das Bestehen von \[ x^p+y^p+z^p=0 \] in zur ungeraden Primzahl \(p\) teilerfremden ganzen Zahlen \(x, y, z\) wird die (von \(x, y, z\) unabhängige) Kongruenz \[ 1+\frac{1}{2^2}+\cdots +\frac{1}{\left[ \frac p3 \right]^2} \equiv 0 \pmod p \] hergeleitet.
0 references
first case of Fermat's last theorem
0 references